Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 5 de 5
Фильтр
1.
Swiss Med Wkly ; 152: w30202, 2022 06 20.
Статья в английский | MEDLINE | ID: covidwho-2202460

Реферат

AIMS OF THE STUDY: Wastewater-based epidemiology has contributed significantly to the comprehension of the dynamics of the current COVID-19 pandemic. Its additional value in monitoring SARS-CoV-2 circulation in the population and identifying newly arising variants independently of diagnostic testing is now undisputed. As a proof of concept, we report here correlations between SARS-CoV-2 detection in wastewater and the officially recorded COVID-19 case numbers, as well as the validity of such surveillance to detect emerging variants, exemplified by the detection of the B.1.1.529 variant Omicron in Basel, Switzerland. METHODS: From July 1 to December 31, 2021, wastewater samples were collected six times a week from the inflow of the local wastewater treatment plant that receives wastewater from the catchment area of the city of Basel, Switzerland, comprising 273,075 inhabitants. The number of SARS-CoV-2 RNA copies was determined by reverse transcriptase-quantitative PCR. Spearman's rank correlation coefficients were calculated to determine correlations with the median seven-day incidence of genome copies per litre of wastewater and official case data. To explore delayed correlation effects between the seven-day median number of genome copies/litre wastewater and the median seven-day incidence of SARS-CoV-2 cases, time-lagged Spearman's rank correlation coefficients were calculated for up to 14 days. RNA extracts from daily wastewater samples were used to genotype circulating SARS-CoV-2 variants by next-generation sequencing. RESULTS: The number of daily cases and the median seven-day incidence of SARS-CoV-2 infections in the catchment area showed a high correlation with SARS-CoV-2 measurements in wastewater samples. All correlations between the seven-day median number of genome copies/litre wastewater and the time-lagged median seven-day incidence of SARS-CoV-2 cases were significant (p<0.001) for the investigated lag of up to 14 days. Correlation coefficients declined constantly from the maximum of 0.9395 on day 1 to the minimum of 0.8016 on day 14. The B.1.1.529 variant Omicron was detected in wastewater samples collected on November 21, 2021, before its official acknowledgement in a clinical sample by health authorities. CONCLUSIONS: In this proof-of-concept study, wastewater-based epidemiology proved a reliable and sensitive surveillance approach, complementing routine clinical testing for mapping COVID-19 pandemic dynamics and observing newly circulating SARS-CoV-2 variants.


Тема - темы
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2/genetics , Switzerland/epidemiology , Wastewater/analysis
2.
BMC Genomics ; 23(1): 289, 2022 Apr 11.
Статья в английский | MEDLINE | ID: covidwho-1785143

Реферат

BACKGROUND: The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. RESULTS: Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. CONCLUSIONS: DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity. DeepSARS uses molecular barcodes (BCs) and multiplexed targeted deep sequencing (NGS) to enable simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2. Image was created using Biorender.com .


Тема - темы
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Genomics , Humans , Mutation , SARS-CoV-2/genetics , Whole Genome Sequencing
3.
Cell Rep ; 38(3): 110242, 2022 01 18.
Статья в английский | MEDLINE | ID: covidwho-1588137

Реферат

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Тема - темы
Antibodies, Neutralizing/isolation & purification , Plasma Cells/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Animals , Antibodies, Viral/isolation & purification , COVID-19/immunology , COVID-19/prevention & control , Cells, Cultured , Cohort Studies , Gene Library , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Humans , Mammals , Neutralization Tests , Peptide Library , Plasma Cells/chemistry
4.
Front Immunol ; 12: 701085, 2021.
Статья в английский | MEDLINE | ID: covidwho-1332120

Реферат

COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


Тема - темы
Aging/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Adaptive Immunity , Adult , Aged , Cells, Cultured , Convalescence , Female , Humans , Male , Middle Aged , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis , Transcriptome , Young Adult
5.
Swiss Med Wkly ; 150: w20271, 2020 05 04.
Статья в английский | MEDLINE | ID: covidwho-176517

Реферат

The reproductive number in Switzerland was between 1.5 and 2 during the first third of March, and has consistently decreased to around 1. After the announcement of the latest strict measure on 20 March 2020, namely that gatherings of more than five people in public spaces are prohibited, the reproductive number dropped significantly below 1; the authors of this study estimate the reproductive number to be between 0.6 and 0.8 in the first third of April.


Тема - темы
Basic Reproduction Number , Coronavirus Infections/epidemiology , Epidemics , Pneumonia, Viral/epidemiology , COVID-19 , Humans , Pandemics , Switzerland/epidemiology
Критерии поиска